3D-принтер — технологии, использование, как работает

Содержание статьи

 

Что такое 3D-принтер

3D-принтер — это устройство, работающее по принципу послойного формирования физического объекта из цифровой 3D-модели.

Процесс трехмерной печати еще называется быстрым прототипированием или аддитивным производством.

3Dprinter-about

Настольный 3D-принтер

Технологии послойного формирования объектов называются аддитивные технологии от английского слова additive – добавлять. В отличии от традиционных способов получения деталей (фрезеровка, точение, распил и т.п.), на 3D-принтере детали получаются методом добавления материала (слоев), что позволяет добиться высокой экономии материалов. 3D-печать может осуществляться разнообразными материалами (от пластика до металла), а также несколькими технологиями, подробнее о которых мы расскажем ниже.

Управление 3D-принтером осуществляется программным способом. Для того, чтобы принтер воспроизводил физический объект, просчет задания на печать должен происходить в специализированном программном обеспечении, в которое загружается цифровая модель в формате для 3D-печати (STL). Специальная программа слайсер разбивает цифровую 3D-модель на слои и выдает сформированный бинарный код понятный для 3D-принтера. Далее полученный код может быть запущен на печать в программном обеспечении для принтера или записан на карту памяти для непосредственной печати без ПК.

 

Способы позиционирования печатающей головки 3D-принтера

extruder 3d

FDM экструдер

В зависимости от расположения и механики работы (кинематической модели) печатающего механизма, они подразделяются на следующие основные способы:

  • Декартова, когда в конструкции используются три взаимно-перпендикулярные направляющие, вдоль каждой из которых двигается либо печатающая головка, либо основание модели.
  • Дельта-робот: три радиально-симметрично расположенных двигателя согласованно смещают основания трёх параллелограммов, прикреплённых к печатающей головке
  • Автономная: когда печатающая головка размещена на собственном шасси, и эта конструкция передвигается целиком за счёт какого-либо двигателя, приводящего шасси в движение.

 

Сферы применения 3D-принтеров

  • быстрое прототипирование
  • мелкосерийное производство
  • изготовление мастер-моделей и форм для литейного производства
  • изготовление бытовых предметов
  • производство готовых изделий со сложной геометрией и внутренней структурой
  • макетирование
  • реклама
  • в медицине для изготовления протезов и имплантатов, также ведутся исследования по 3D-печати внутренних органов человека
  • строительство зданий и сооружений
  • производства корпусов экспериментальной техники (от телефонов до оружия)
  • пищевое производство
  • другое

 

Основные технологии 3D-печати

 

Лазерная стереолитография (англ. laser stereolithography, SLA) — 3D-печать, с помощью которой объект формируется из жидкого фотополимера, затвердевающего под воздействием лазерного или ультрафиолетового излучения. Процесс формирования объекта происходит в ванне с жидким фотополимером. На платформе, погруженной в фотополимер путем засветки формируется изображение первого слоя объекта и происходит кристаллизация фотополимера. Затем платформа перемещается на толщину одного слоя (6-100 мкм) вверх и происходит формирование следующего слоя. Процесс формирования слоев продолжается до полного построения объекта, при этом жидкий полимер затвердевает и превращается в достаточно прочный пластик.

Технология печати SLA

Схема 3D-печати SLA

Этот метод 3D-печати немного отличается от других, так как в качестве «строительного материала» используются не порошки, а фотополимеры в жидком состоянии. SLA технология применяется в промышленных 3D-принтерах. С помощью лазерной стереолитографии получаются объекты с высокой (до 6 микрон) точностью и гладкой, почти глянцевой, поверхностью не требующей постобработки.

3d_printer_dlp

Фотополимерный 3D-принтер и модель из фотополимера

Полимеризация фотополимерного пластика ультрафиолетовой лампой (англ. Digital Light Processing, DLP) — технология похожа на предыдущую (SLA), но пластик твердеет под действием ультрафиолета. DLP технология может использоваться как в промышленных, так и бытовых 3D-принтерах.

Выборочное лазерное спекание (англ. selective laser sintering, SLS) — 3D-печать, с помощью которой объект формируется из порошкового материала (пластик, металл) в следствие его расплавления лазерным лучом. При SLS печати, материал наносится на платформу тонким равномерным слоем (специальным выравнивающим скребком), после чего на поверхности платформы лазерным излучением формируется первый слой объекта. Затем платформа опускается на толщину одного слоя (16-80 мкм) и на неё вновь наносится порошковый материал. Температура в рабочей камере в процессе 3D-печати поддерживается на уровне чуть ниже точки плавления рабочего материала, что позволяет уменьшить необходимую для сплавления мощность лазера. Для предотвращения окисления материала процесс проходит в бескислородной среде.

Технология печати SLS

Схема 3D-печати SLS

Метод SLS-печати позволяет получать, в том числе, прочные металлические изделия, не уступающие аналогам произведенным традиционными способами, но в отличии от последних, имеющие сложную внутреннюю структуру. SLS применяется только в промышленных 3D-принтерах.

3dprinter-slm

Изделие из металла полученное на 3D-принтере

Выборочное лазерное сплавление (англ. Selective laser melting, SLM) — технология лазерного плавления металлического порошка по математическим CAD-моделям. С помощью SLM-печати создаются сложные металлические детали узлов и агрегатов, а также неразборные конструкции с изменяемой геометрией.

Технология селективного лазерного плавления SLM очень похожа на SLS, однако в отличии от последней, материалы (порошки) подвергаются не спеканию, а плавлению до образования гомогенной (густой, пастообразной) массы, как это происходит в EBM-печати. В отличии от EBM, в SLM используется лазер. Данный процесс успешно заменяет традиционные методы производства, так как физико-механические свойства изделий, построенных по технологии SLM, зачастую превосходят свойства изделий, изготовленных традиционным способом. По принципу SLM построены только промышленные 3D-принтеры.

 

Технология печати FDM

Технология 3D-печати FDM

Моделирование методом послойного наплавления (англ. Fused deposition modeling, FDM) — технология послойного создания трехмерных объектов за счет укладки расплавленной нити из плавкого материала (пластика, металла, воска). В качестве материалов для FDM-печати в большинстве случаев используются термопластики (ABS, PLA и др.), выпускаемые в виде катушек нитей или прутков.

FDM-печать была разработана в конце 1980-х годов С. Скоттом Крампом. Ее коммерческое распространение началось в 1990 году. На сегодняшний день FDM является самой распространенной технологией 3D-печати из-за простоты конструкции и низкой стоимости подобных устройств.

Термин «Fused Deposition Modeling» и аббревиатура FDM являются торговыми марками компании Stratasys. Участники проекта RepRap, придумали аналогичный термин «Fused Filament Fabrication» или FFF (Производство способом наплавления нитей) для использования в обход юридических ограничений. Термины FDM и FFF равнозначны по смыслу и назначению.

3dprinter-fdmПринцип печати по FDM/FFF технологии заключается в нанесении расплавленного материала на рабочую платформу. Нанесенный материал быстро остывает и переходит из вязкого состояния в твердое. Следующий слой наносится на предыдущий и тем самым спаивается с ним. В процессе печати пластиковая нить или пруток под воздействием высокой температуры в экструдере размягчается и выдавливается на платформу. Часто в данном способе печати используют две рабочие головки (экструдера) — одна выдавливает на платформу рабочий материал, другая — растворимый материал поддержки. Материал поддержки позволяет строить сложные объекты без провисания слоев.

FDM-печать применяется как в промышленных, так и в подавляющем большинстве современных бытовых 3D-принтерах. Технология на сегодняшний день настолько распространена, что понятия «бытовой принтер» и «FDM принтер» многие пользователи считают синонимами.

Электронно-лучевая плавка (англ. Electron Beam Melting, EBM) — аналогична SLS/DMLS, только здесь объект формируется путём плавления металлического порошка электронным лучом в вакууме.

Электронно-лучевая плавка — метод плавки металла путем применения электронного пучка. Используется при плавке особо чистых материалов, например, сталей и титана, и материалов, стойких к высокой температуре и химическим воздействиям. При EBM-печати практически отсутствует загрязнение материала посторонними примесями, так как процесс проходит в вакууме. Промышленные электронные плавильные печи позволяют производить изделия длиной в несколько метров и весом несколько тонн.

Технология многоструйного моделирования (англ. Multi Jet Modeling, MJM) — основана на многоструйном моделировании с помощью фотополимерного или воскового материала. Используется в 3D-принтерах компании 3D Systems серии ProJet. Аналогичной технологией является PolyJet от компании Stratasys, которая сопоставима по качеству, но использует более дешевые материалы.

Технология печати MJM

Схема 3D-печати MJM

Принцип MJM-печати заключается в следующем. Печатающая головка со множеством мельчайших сопел, расположенных линейно в несколько рядов наносит материал на рабочую поверхность по принципу струйной печати. Количество сопел начинается от 96 для младших моделей 3D-принтеров и достигает 448 для продвинутых моделей. Блок сопел движется вдоль рабочей поверхности и наносит слой жидкого фотополимера. Затем, УФ-лампа засвечивает только что нанесенные частицы материала, в результате чего тот затвердевает, формируя прочный слой. Операции нанесения и засвечивания материала повторяются до полного построения объекта.

 

Технология цветной струйной печати (англ. Color Jet Printing, CJP) — построена на принципе послойного склеивания и окрашивания композитного порошка на основе гипса или пластика. CJP применяется в 3D-принтерах компании 3D Systems серии ProJet. До этого данный принцип печати назывался 3D Printing (3DP) и был разработан в Массачусетском технологическом институте (MIT) в 1993 году. CJP (3DP) позволяет быстро создавать как одноцветные, так и полноцветные прототипы из композитного порошка.

Изделие полученное на CJP 3D-принтере

Изделие полученное на CJP 3D-принтере

Принцип CJP-печати основан на склеивании основного материала (композитного порошка) связующим. Связующий материал — склеивает и окрашивает вместе частицы в нужных местах, формируя изделие. Построение объекта происходит послойно. Сначала материал модели равномерно тонким слоем распределяется по всей поверхности платформы камеры построения. Потом на этот слой наносится связующий материал, склеивая и окрашивая частицы между собой согласно цифровой 3D-модели. Затем платформа смещается вниз на толщину слоя (100 мкм). Операции нанесения материалов повторяются слой за слоем до полного построения модели.

Ламинирование (англ. laminated object manufacturing, LOM) — способ формирования объектов послойным склеиванием (нагревом, давлением) тонких листов рабочего материала с вырезанием (с помощью лазерного луча или режущего инструмента) соответствующих контуров на каждом слое.

Объекты, напечатанные техникой LOM, могут быть дополнительно модифицированы путем механической обработки или сверления после печати. Толщина слоя при печати таким способом зависит от используемого материала, как правило, равна толщине обычной бумаги для копирования.

Технология печати LOM

Схема 3D-печати LOM

Ламинирование не совсем относится к традиционным технологиям 3D-печати, поэтому не очень распространено. 3D-печатm таким способом требует использования материала поддержки, который затем очень затруднительно удалять, особенно на объектах с высокой детализацией.

Биопринтеры — экспериментальные установки, в которых печать 3D-структуры будущего объекта (органа для пересадки) производится каплями, содержащими живые клетки. Далее деление, рост и модификации клеток обеспечивает окончательное формирование объекта.

Понравилось? Покажи друзьям!

Вам понравится

Авторизация
*
*
Генерация пароля